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Abstract. — We study a probabilistic one-dimensional majority-rule two-state cellular au-
tomaton and examine the stability of ordered magnetised states in systems of size L as the
neighbourhood radius R varies. We find that a scaling R ~ InL is sufficient for an ordered
phase to be metastable, i.e., to survive for times much longer than the typical critical fluctua-
tion. The lattice magnetisation obeys a scaling relation which agrees with results from mean-field
analysis.

Probabilistic cellular automata (PCA) have been of much recent interest largely as a result
of their wide ranging applications. For example, they are paradigms for multi-component
computing and information storage structures (1,2, 3]. They are also relevant to models of non-
equilibrium dynamics in physical systems [4] as well as having direct connections to equilibrium
statistical mechanics in higher dimensions [5, 6] (for reviews and extensive bibliography, see
(7, 8, 9]). In many of these applications the question of interest is the existence of stable
macroscopically ordered states in the presence of noise which disrupts the system in a manner
similar to the effects of temperature in equilibrium statistical mechanical systems. In contrast
to the usual in statistical mechanics one-dimensional PCA in general do not obey detailed
balance and hence do not have equivalent one-dimensional Hamiltonians. They can, however,
usually be mapped to highly anisotropic spin systems in higher dimensions, with properties
which may be significantly different, as was the case for the Toom model [1].

There is a well-known free-energy argument [10] against order in one dimensional spin sys-
tems at finite temperature, indicating that when interactions are short-range phases tend to
mix in arbitrarily small segments, and therefore there is no long-range order (for discussions
of order in long-range, one-dimensional spin systems, see [11, 12]). The above argument does
not necessarily apply to PCA, although a belief is that finite one-dimensional PCA with posi-
tive local transition rates are ergodic and all states are therefore eventually unstable to noise.
This is known as the “positive rate conjecture” (see for example [13] for a discussion of the
continuous-time case). By way of an counterexample, however, a complex hierarchical PCA
possessing an ordered state in the presence of noise was proposed by Gacs [3].

Even if finite systems are ergodic and have a unique stationary state, there may be states
which are metastable, i.e., the probability of the system leaving them decreases roughly expo-
nentially with system size (see [14] and Refs. therein). In this letter we examine the metasta-
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bility of states initially magnetised, in the particular case where the interaction range is allowed
to scale with the system size. We study numerically a simple 1d PCA model, and show that an
interaction range scaling as R(L) ~ In L is sufficient to produce a “macroscopically” ordered
state which will survive noise for times much greater than the time fluctuations observed in the
system when it appears to be critical. For a macroscopic system (L ~ 107 in one-dimension)
this indicates that a microscopic interaction neighbourhood (R ~ 16) is sufficient for metastable
order. We present also a mean field theory which explains the behaviour of the system at low
noise levels.

The rule we study is as follows: we have a line of L sites with periodic boundary conditions.
Each site can take on values £1. At each time step a local field is first summed for each site,
over the site itself and R neighbours on each side, then all sites are updated simultaneously to

be 41 with probability 3 + p if the local field is positive, or % — p if the local field is negative.

Therefore p measures the noise in the system and the limiting values are p = 0, corresponding to

completely random, uncorrelated updating, and p = 2 corresponding to deterministic majority

rules (the R = 1 case has been studied analytically in [15]). The corresponding probabilistic
case for R = 1 has been studied in considerable detail by Gray [16]. The transition probability
to a +1 state versus local field is thus a step function, reminiscent of spin Hamiltonians at
low temperatures. However, since it is not exactly of the form of a hyperbolic tangent [17]
our system does not satisfy detailed balance and hence does not possess a one-dimensional
Hamiltonian.

In figure 1 we show typical space-time pictures of the model. Time evolves from top to
bottom; plus sites are represented by black pixels. We choose to start all lattice nodes with
a value +1. The lattice size is 720, the number of time steps shown is 800 and p = 0.35. We
see how, as we increase R, the system goes from (I) a regime of many small domains with
average zero magnetisation to (II) a regime of very few large, long-lived domains in which the
overall magnetisation could well be positive or negative to (III) a mostly-magnetised quasi-
homogeneous regime in which the minority sites are distributed at random. For sufficiently
low values of p (III) the small-R behaviour becomes less structured than (I), but still has zero
average magnetisation. For lower p, as R is increased, regime (II) is increasingly difficult to
find and the system apparently changes from regime (I) to regime (IIT) directly. (IV) also
shows an unmagnetised structureless regime for R =2 and p = 0.1.

Before we discuss the results reported below several points need to be noted. The first is
that we measure the absolufe value of the magnetisation at each time step, since in regime
(II) the overall magnetisation could equally be positive or negative. This choice still allows us,
however, to distinguish between the homogeneous, the multiple-domain and the noisy regimes.
A second point is that an initial condition of all sites magnetised to +1 has been chosen. This
choice is clearly more appropriate than an initial condition of randomly magnetised sites since
we plan to investigate the stability of the ordered phases. Surprisingly, due to the synchronous
updating we find that the mean-field magnetisation is reached in one time step. Furthermore,
the arguments given later in this letter apply to the stability of a single low-temperature (or
low-noise) ground state. We have also found that at very low noise levels and large enough R
it takes a random initial condition many iterations to evolve to a metastable ordered state, so
that simulation becomes prohibitively long. Finally, we note that a large number of sampling
time steps are required to reproduce good data. While increasing R for fixed L there exists a
maximum in the size and length of the magnetisation fluctuations as the system moves towards
the magnetised state. We believe that this maximum is an indication of critical behaviour in the
system. At these “critical” points we have examined both the initial relaxation and fluctuation
times. The relaxation time, as defined in the concept of damage healing [18], is how long it takes
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Fig.2. — Absolute magnetisation versus R for 64 < L < 16384 scaled together according to (1) for
p = 0.35. The inset shows the unshifted curves.

for two systems with different initial conditions, evolving under the same random numbers, to
evolve to nearly identical states. The fluctuation time is defined by the dominant wavelength of
the magnetisation-time history, and was estimated visually. Our choice of initial and measuring
times are greater than the relaxation and the fluctuation times respectively. This is crucial,
as it indicates that the magnetised state survives over many times this well-defined time scale.
Depending on the lattice sizes and the noise, the results investigated in this letter have been
sampled over 2 x 10° to 2 x 107 time steps.

In figure 2 we present the time averaged absolute magnetisation |m| of the lattice for L =
64, 256, 1024, 4096 and 16384 and for a noise level of p = 0.35. The curves for different system
sizes have been shifted by multiples of 1.59 showing that the magnetisation satisfies a scaling
relation of the form

|m(R,L)| = f(R—Aln L) (1)

where A = 2.2/In4 = 1.59. The inset shows the original unshifted data. For large enough
values of R the system clearly remains magnetised and the existence of a clearly magnetised
state is observed even for a noise level of p = 0.2. We note that for a given p the entire
|m(R, L)| curve scales into the same universal form rather than just the crossover point scaling
together. This extensive scaling of the entire curve holds for values of p down to ~ 0.2 before
the functional form for different L begins to deviate. For various values of p, and for smaller
lattice sizes (L < 1024), we have also measured A(p); the results are given in figure 3.

We can understand some aspects of the behaviour of the magnetisation in terms of a simple
analysis. The high-p (low-noise) limit corresponds to the situation of having a single domain
across the entire lattice. In this situation the local magnetisation within a domain can be
predicted using a mean field approximation (see [1] and Refs. therein). Briefly, consider the
interior of a domain where the minority sites are essentially uncorrelated (regime IIT) and have
a density p = (1 —m)/2. The probability of minority sites being a majority in a particular
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Fig.3. — Amount of shift A(p) versus p necessary for scaling of absolute magnetisation curves.
neighbourhood is
2R+1
2R+ 1N ,
_ 1 — p)2R+1-n 9
=3 (U7 )ea-p (2)
n=R+1

Updating this neighbourhood we get a self-consistency condition relating p to p
1
p=2f(P)t 5P 3

In the large-p (or small-p) limit this reduces to p ~ % — p such that in the large-R limit the

magnetisation becomes
|m| =mpe — 2p . (4)

This value for the magnetisation agrees with the simulations down to surprisingly low values
of p, around 0.2.

In figure 4 analytic results for p along with simulation measurements of the magnetisation
within domains for R = 20 are shown. The agreement is very good for most values of p,
almost down to the transition point between regimes (I) and (II). We note, all the same, that
the mean field theory ignores the dynamics of the domain evolutions and should therefore
not be interpreted as a proof of the stability of the ordered phase. However, it does provide
a remarkably good prediction to the magnetisation within domains, and further predicts the
value of p at which the onset of regime (I) occurs for a given R reasonably well.

The logarithmic scaling of the critical interaction neighbourhood may be understood by
considering the probability of a metastable ordered state evolving to a similar state with a
large enough fluctuation of the opposite magnetisation. Consider two systems of lengths L

o0
it
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Fig.4. — Mean-field theory estimate (solid line) and simulations (points) for the density of majority
sites within domains for R = 20 over the full range of p.

and Lo, initially with m ~ m;,r, with neighbourhood radit R; and R;. We examine the
condition on R under which domains of size R; and R, which should survive for at least a few
time steps, will form in both systems in a single time step. We consider in particular the case
of low level of noise (p close to =). The number of sites that must change is mR; and mR;

- respectively. Equating a simple estimate for the probabilities of such small domain formation
in the two systems gives

Iy (5 =P = Ly (5 = P, )

This is satisfied if the interaction neighbourhood is
R(L) = A(p)lnL+ B (6)

where !
A(p) = - (7)

1 )
2Pln(§ -p)

that is, if the interaction neighbourhood radius scales as the logarithm of the system size.
Clearly, for high-p (low-noise) the dynamics of domain formation will be important and may
not be ignored in the manner discussed here. However, it is not unreasonable to expect a more
detailed argument to still yield a logarithmic scaling of R with L.

In summary, in this letter we have presented numerical data and analytic arguments which
show that an interaction neighbourhood scaling as the logarithm of the system size is sufficient
to maintain order for fairly long times in metastable magnetized states of one-dimensional
PCA in the presence of considerable levels of noise. Even if the differences between cellular
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automata and spin systems can be considerable, as discussed in the introductory paragraph,
the results in this letter are consistent with a scaling relation recently derived for order at
non-zero temperatures in finite one-dimensional spin systems with a well-defined free energy
[19].

The results are pertinent to the question of order in real one-dimensional systems, since
physical systems are always finite. They suggest that a microscopic interaction neighbourhood
of the order of ~ 10 — 20 sites alone may be sufficient to maintain a macroscopic system in an
ordered state for a long time even when significant levels of noise are present.

Several aspects of our system need further understanding. These include a full analysis of the
functional form of A(p), the transient behaviour when the system starts from a random initial
condition far away from equilibrium, and explanations of the fact that the whole function
|m(R)| scales so well over a large range of radii. Much of this will involve analysis of the .
dynamics of the domain formation, and the “damage healing” from initial conditions; work on
these aspects is in progress. Furthermore, the stability properties of configurations in regime
(II), with several large magnetised domains, are unknown even for low noise.
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