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PACS. 68.10 — Fluid surfaces and interfaces with fluids.

PACS. 05.70F — Phase transitions: general aspects.

PACS. 68.42 — Surface phase transitions and critical phenomena.
PACS. 64.60K — Multicritical points.

Abstract. — We study quasi-wetting transitions in confined systems in which capillary
condensation is suppressed. In particular, we are concerned with adsorbates between opposing
walls (one wall favours wetting, the other drying). We employ an Ising model and calculate the
global phase diagram for a slab of width L and boundaries with opposite surface fields, in
Landau theory. We find novel first-order, critical, and tricritical quasi-wetting transitions,
which converge smoothly, for L — «, to the familiar wetting transitions. We question the
recently proposed novel mechanism for critical-point shifts in films.

While a semi-infinite system (e.g., an adsorbate at a wall) can display a rich variety of
first-order, critical, and tricritical wetting phase transitions [1, 2], a confined system (e.g.,
an adsorbate between two closely spaced walls) is generally expected to be deprived of this
wealth [3]. This expectation is based on essentially two observations: i) true wetting
transitions are prevented by the finite wall separation L, and ii) wetting is pre-empted by
the capillary condensation transition [4]. Although these observations are often pertinent,
they must not be emphasized unduly. Indeed, i) neglects the possibility of quasi-wetting
transitions. These are thermodynamically sharp phase transitions in which a wetting layer is
formed, whose thickness is finite for finite L, but diverges for L — . (Note that this is
different from prewetting. There, the layer thickness remains finite in that limit [1].)
Furthermore, ii) ignores that in many systems (of fixed density or concentration, or with a
certain symmetry) capillary condensation is suppressed, so that quasi-wetting can occur.

The existence and importance of quasi-wetting in confined systems has been established
recently [5-8]. Furthermore, there is the intriguing possibility that quasi-wetting not only
replaces true wetting, but replaces bulk phase transitions and bulk criticality as well! This
conjecture [5, 8], however, is largely based on Landau theory or mean-field arguments, and
caution is in order. The main objective of our contribution is to calculate and interpret the
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global phase diagram of quasi-wetting in Landau theory. Furthermore, we will also
critically question its applicability beyond mean-field theory.

Which systems display capillary condensation and which show quasi-wetting? Capillary
condensation prevails in confined systems with like walls (e.g., favouring wetting), and
quasi-wetting is abundant when there are opposing walls (e.g., one wall wets, the other
dries). In Ising model language walls can be represented by surface fields H, and H..
H, ~ H, describes like walls, and H,=~ — H, opposing walls. Note that although capillary
condensation is common for systems between two identical parallel walls or systems
enclosed by a wall (e.g., fluids in cylindrical or spherical pores), it can be easily suppressed
by imposing conservation of particle number in a one-component adsorbate[9], or
conservation of species in a mixture [10, 11].

Where should the experimentalist look for systems with opposing boundaries? Perhaps
the most obvious example concerns magnetic multilayers with effective magnetic fields of
alternating sign at successive interlayer interfaces. This and other examples were already
suggested by Brochard and de Gennes[5]. In addition, in the spirit of experiments by
Franck et al. [12], one could consider a liquid mixture with two phases (A and B) between
plates of different surface chemical preparation, so that one plate preferentially adsorbs A,
and the other B. Furthermore, especially relevant for us are the experiments by Laheurte et
al. [6] on *He-*He films bounded by a solid wall (bottom surface) and a liquid-vapour
interface (top surface). The solid preferentially adsorbs the ‘He-rich phase, whereas the
vapour favours *He. In these experiments a horizontal stratification of the phases is seen,
along with a superfluidity phase transition. Precisely this stratification, implying the
formation of a sharp liquid-liquid interface, exemplifies the quasi-wetting transition we are
concerned with. :

In computer simulations quasi-wetting between opposing boundaries has been studied in
detail by Binder et al.[7]. Adsorption on stepped surfaces was simulated using a two-
dimensional (2d) Ising lattice-gas model. The effect of surface steps was modelled by various
types of boundary energies (surface fields) on the two parallel edges of a terrace of width L.
For opposing boundaries (rounded) quasi-wetting transitions were observed which
converge, for L— o, to the wetting transitions of the 2d Ising model, calculated exactly by
Abraham [13]. We now proceed to our theoretical results and will return to questions of
general importance at the end.

The microscopic model paradigm for our purposes is an Ising ferromagnetic slab of
thickness L with bulk coupling Jg and surface coupling Js. The bulk field is H and to the
boundaries we apply surface fields H; and H,. We first recall established results for
H, =~ H,(>0) [3]. Bulk two-phase coexistence is shifted from H =0 for L = «, to H<0 for
finite L. In particular, the bulk critical point T(«) is shifted to T.(L), according to finite-size
scaling,

TAL) — T@) < YA H) L™, D

where the scaling function Y(y) is nearly constant. Furthermore, wetting phenomena are
largely suppressed, but not entirely. Prewetting transitions remain and can compete with
capillary condensation, implying novel triple points [4, 14].

We now proceed to study the case H;= — H, in Landaw theory, for obtaining the
complete mean-field phenomenology in the neighbourhood of T.. Two lengths are relevant,
the «substrate» separation L and the bulk correlation length of the «adsorbate», &, which
measures temperature relative to T.. As expected, the ratio L/£ is all-important. The
substrate parameters are the surface fields 7, and ks, (simply related to H, and H3) and the
surface-coupling enhancements g; and g, (related to Js/Jg). For clarity and simplicity we
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take h; = — h; and g, = go(= g). For fluids, g <0, whereas for magnets both g <0 and g=0
are pertinent (g >0 corresponds to surface ferromagnetism above 7'.) [15]. When the surface
fields are opposite, capillary condensation is suppressed by symmetry and it suffices to take
the bulk field % equal to zero, in order to discuss the bulk phase equilibria and wetting
phenomena (except for prewetting). For the more general case, k, = — hy, h~0, and g1=@s,
we expect the physics to be qualitatively the same.

From here on we will use scaled variables (like L/), because they allow a more complete
(but still compact) description from which the desired information in terms of L, T, k, and g
can be extracted. The phase diagrams and order parameter profiles m(z) have been obtained
as usual [2, 3] by minimization of the Landau surface free-energy functional y[m],

! o\ 2

o)=Lyl = [ a2 & (S + e - iy - B, - ) - gt + e, @
0

where c is a constant, zZ =z/L, w=Lm, h,=L2h,, and = Lg. Equation (2) is suitable when

T is varied at fixed L, or when T'=T,. When L is varied at fixed T(+ T.) we use different

scaled variables, obtained by replacing L by & everywhere in eq. (2). (The upper limit of the

integral, 1, is replaced by L/&.)

The global phase diagram we calculated is shown in fig. 1. It focusses on the immediate
vicinity of bulk criticality (L/£ small) (*). From here we can go smoothly to the opposite
regime L/£>>1. The limit L — « corresponds to moving out from the origin in fig. 1 along
straight lines, and the result is the phase diagram for wetting in semi-infinite geometry [2]
(fig. 2). Thus, our first conclusion is that the quasi-wetting transitions between opposing
boundaries can be understood as shifted wetting transitions, for L/& >> 1. This is true not only
for the location of the transitions (in T, h,, and g), but also for their order (first-order,
critical, or tricritical), as well as for the profiles m(z). Note, however, that the character
(e.g., universality class) of the shifted wetting transition beyond Landau theory is
qualitatively different from that of the wetting transition itself (because, to begin with, the
dimensionality d is changed)[8]. As far as typical profiles m(z) are concerned, some
representative ones have been sketched [5], or calculated and shown in earlier works [7, 8].
(Note that we use «wetting» as a general term to denote wetting and/or drying, depending
on which reference phase is assumed in bulk.)

Our second conclusion is that the full variety of phase transitions persists near bulk
criticality (I/&<1). We find first-order, critical, and tricritical transitions (even for 7> T,
provided g > 0), in addition to an important region without transitions, for T< T, and g <0
(fig. 1). A first step towards more comprehensible phase diagrams is to take sections
through fig. 1 or 2. Figure 3 shows a «temperature» scan through fig. 1, for Lg/c = — 1. The
phase boundary represents transitions from a «bulklike» two-phase coexistence region (with
profiles m_(2) and m,(z)=-—m_(L—2z)) to an «interface-like» one-phase region
(m(z) = — m(L — 2)), as h, or & are increased at fixed L. Finite-size effects overwhelm when
the natural decay length & of the profile becomes as large as the separation L, causing the
absence of phase transitions for L/£<1, unless ¢ >0. Another selected phase diagram is
shown in fig. 4 (for &g/c = — 0.5), illustrating the transitions when L is varied at fixed 7.
Note the possibility of re-entrance of the interface-like phase.

(1) As usual, the Landau theory applies well when both L and £ are much larger than molecular
lengths. This imposes no restrictions on the ratio L/E. Clearly, the regime L/§<1 describes the
vicinity of the bulk critical point. Critical adsorption (with m(2) < 27! in Landau theory), and the
algebraic decay of the finite-size interaction between boundaries at bulk ecriticality (with
y(L) — y(0) < ™2 in Landau theory) naturally obtain for L/§ — 0. On these topics and their relevance

for wetting, see[16, 4].
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Fig. 1. — Global phase diagram near bulk criticality, projected in the plane of scaled variables Lg/c and
LIE(E_=&T<T,) and &, =&(T >T,). This diagram is suitable for (vertical) temperature scans at
fixed g and L. A third axis perpendicular to this plane can serve for the scaled surface field L?|hy |/c*®
(h, and — h, are equivalent). The phase transitions (first-order, tricritical, and critical) occur at hy; #0
and lie on a sheet which comes down to intersect the &, = 0 plane at the (analytically calculated) critical
borderline. This line approaches a horizontal asymptote for gL/c— — , at L/£_ =. The tricritical
line approaches a straight line with slope — 272, parallel to the thin line in the figure, for Lg/c — — .
For Lg/c — + %, both the critical borderline and the tricritical line approach a similar straight line with

slope — 1.
Fig. 2. - Global phase diagram for wetting in a semi-infinite geometry, projected in the plane of ¢"#/&

and g/cV2. A third axis perpendicular to this plane can serve for the surface field |h1] /c2. The wetting
transitions (first-order, tricritical and critical) occur at hy # 0 (ky > 0 for wetting and h; <0 for drying),

-t

and form a sheet which meets the &, =0 plane at bulk criticality (c"?/&=0). There, the ordinary

(g <0), special (g =0), and extraordinary (g >0) transitions are indicated [15]. For T>T. and ¢ >0, '

there is a region of surface phase transitions at h; =0, ending at the line of surface criticality. This
phase diagram smoothly emerges from fig. 1 in the limit L — =, and thus also gives the location of the

quasi-wetting transitions for L >>&.

Using our scaled variables, but invoking true critical exponents instead of the mean-field
ones, our results suggest that the location T (L) of the quasi-wetting transitions for, fixed g
and L— o, is compatible with the finite-size scaling form

T(w0) — To(L) o« X(LM*hy) L. 3)
We have X(x)— const, for —0 (see fig. 3). This limit is well known: for h,=0,

T.(L)=T.(L) and eq. (8) gives the familiar bulk critical-point shift, as a particular case of
eq. (1). We also have X(x) — 2, for £ — ®, because we recover the wetting phase boundary

for L— . Indeed, for hy=—hy# 0, To(L)— Tw(®), with
T () — T(o) o i, 4)

In Landau theory egs. (3) and (4) are obeyed with v =1/2, 4)/v=1, 2, or 3, forg<0,9g=0,o0r
g>0, respectively. Furthermore, when we write T.(0) — To(L) = (To(0) — Ty(®)) —
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Fig. 8. - Selected phase diagram corresponding to a temperature scan at Lg/c=—1 in fig. 1, for
T <T.. The bottom point on the phase boundary describes the shift of the bulk critical point. Useful
paths are (horizontal) temperature scans at fixed L and hy, or (vertical) surface-field scans at fixed L
and T.

Fig. 4. — Selected phase diagram corresponding to a separation (L) scan at &g/c = — 0.5, for fixed
T <T.. Useful paths are (horizontal) separation scans at fixed T and k;, or (vertical) surface-field scans
at fixed T and L. The value of &g/c (< 0) is chosen to give a first-order wetting transition for L = o (cf.
fig. 2). The dashed line gives the asymptote of the phase boundary for L — « (cf. eq. (5)). Note that for
finite L the transition can change order and become tricritical or critical.

— (Ty(L) — Ty()) we see that the next-to-leading term of X(x), for x—> w0, gives the wetting
transition shift T,(L)— Tw(). We find that the wetting transition shifts are typically
ewponentially small in L/E, in Landau theory. This generalizes an earlier result of Parry and
Evans for the shift of critical wetting [8]. We have found analogous results for the wetting
transition shifts when k; is allowed to vary at constant T. For example, when the transition
for L— o« is first-order wetting (as for fig. 4), numerical computation indicates

ML) — Iy(%) o« A exp[— 272 L/E]/E? (5)

with A>0. For critical wetting, A <0. Parry and Evans proposed scaling laws, beyond
mean-field theory, for the shift of critical wetting [8], and could explain quantitatively the
simulations by Binder et al. in d =2[T].

The final step towards realistic phase diagrams is to deconvolute the scaled variables and
to draw 3-dimensional phase diagrams in (1/L, T, hy)-space, for a particular g. Parry and
Evans have sketched one for when the transition for L— o is critical wetting [8].

A very important questjon arises. Where is T.(L)? Parry and Evans interpreted T (L) as
T.(L)! Brochard and de Gennes did this too [5]. However, this interpretation appears rather
problematic for the following reasons. Let the dimension d be large enough to allow bulk
phase transitions in the confined system, that is d>2. For clarity, let d =3. Then, the
Landau theory predicts that the quasi-wetting transition, at T,(L), is at the same time the
terminus of bulk two-phase coexistence (see, e.g., fig. 3). Indeed, the interfacelike profile,
which lives at T'> T(L), apparently constitutes a single and unique phase. This mean-field
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picture has led to the conjecture that the bulk critical point T,() shifts, or rather leaps, for
finite L, all the way to the quasi-wetting point T (L) [5, 8]. Note that T, (L) can lie anywhere
between T.() and T =0, depending on the strength of the surface fields.

A first problem is that finite-size scaling is not compatible with the proposal that
T(L)=Tw(L), because T,(«)# T, () unless h;, =0 (see eq. (4)). Next, there is the obvious
possibility that the Landau theory misses the true bulk critical point T,.(L) altogether,
because the pertinent transverse fluctuations, in « and y directions parallel to the interface,
are neglected (see eq. (2)). Note that the Landau theory makes a one-to-one correspondence
between phase and profile. This can be misleading. For example, we know that the
interfacial profile remains single and unique in the limit LL— «, but definitely represents two
3d bulk phases... What happens to these two phases for finite L? Do they remain distinct as
quasi-2d phases separated by an interface that runs parallel to the walls (assuming we are
above the wetting point)? Or do they suddenly become part of a single thermodynamic
phase? Furthermore, the answer to this question may depend on whether one is above or
below the roughening transition. Clearly, further research beyond Landau theory is needed.
We have begun to carry out pertinent computer simulations.

In conclusion, our study indicates that the quasi-wetting transitions between opposing
walls can be unambiguously understood as shifted wetting transitions. Our results do not
support the alternative interpretation in terms of novel critical-point leaps.

In summary, the original predictions coming out of our calculations are, firstly, the novel
global phase diagram of wetting between opposing walls, which reveals first-order, critical,
and tricritical quasi-wetting transitions. (Previous work was restricted to qualitative
considerations [5], or to the critical transitions alone[8].) Secondly, our calculation and
interpretation of quasi-wetting in terms of a shifted wetting transition leaves open the
possibility that the quasi-wetting point be different from the shifted bulk critical point. Our
predictions (in particular, the phase diagrams fig. 1, 3 and 4) can be tested most
straightforwardly in computer simulations of 3d Ising slabs, along the lines of previous
simulations of first-order, critical, and tricritical wetting by Binder et al. [17]. To this end, it
would suffice to replace, in these simulations, the identical walls (H, = H,) by opposing ones
(H,=—H,).
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