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We derive an exact expression for the low-temperature correlation function in the eight-vertex-
equivalent Ising model. We provide a phenomenological interpretation of the qualitative nature of the
transfer-matrix spectrum in terms of bubble excitations and speculate about the behavior in nonzero

magnetic field.
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The planar symmetric eight-vertex, or Baxter, model
in which arrows are assigned to every edge of a quadratic
lattice such that the number of arrows pointing towards
each vertex is even, and the vertex weights are invariant
under reversal of all arrows, is known to be equivalent to
an Ising magnet; here, spins on the dual lattice are cou-
pled by next-nearest two-body interactions and nearest-
neighbor four-body interactions, but there is no external
field.! The free energy of this model, obtained by trans-
fer-matrix diagonalization,? led to a refinement of the
concept of universality to handle the continuous depen-
dence of critical exponents on interaction parameters, an
astonishing feature to emerge from the calculation.
Johnson, Krinsky, and McCoy® (JKM) extended
Baxter’s work to obtain bands of excitations of the
transfer matrix (hereinafter denoted V) nearest to the
maximal eigenvalue Ag. These results were recaptured
recently and extended to the entire spectrum using a
matrix-inversion technique.* JKM obtained the correla-
tion length and associated critical exponent; this is a sub-
tle exercise since, although V is normal, it is not self-
adjoint and has complex eigenvalues. Another interest-
ing phenomenon noted by JKM was the emergence of
single-particle bound states from the two-particle con-
tinua as the parameters vary in the ferromagnetically or-
dered phase. Later in this Letter, we shall introduce a
much simpler bubble model® in which a similar spectral

change is associated with a pinning-depinning transition.
This comes about because the four-body interaction can
induce an attraction between opposite sides of the bubble
causing its collapse at low enough temperatures into a
thread of finite thickness, a manifestation of the one-
particle bound-state formation.

Almost nothing is known exactly about the decay of
the pair-correlation functions in these models (beyond
the correlation length). In the one-particle region estab-
lished by JKM, we give a new simple argument which
extracts the Ornstein-Zernike behavior directly from the
JKM excitation energies. We then show that the bubble
model results are consistent with this and deduce the
correlation behavior between the spectral transition tem-
perature and the critical temperature, thereby establish-
ing the existence of an intermediate phase. The works of
Baxter? and JKM showed that the change in character
of the spectrum has no thermodynamic consequences,
even though the correlation length is singular. Our phe-
nomenological model suggests that this picture may be
quite common.

On an infinite-length cylinder with axis in the transfer
direction (1,0) standard theory gives the pair-correlation
function for local observables O(y) in each column as

pCx,p) ={go| O0) (A VIO () | 60, )]
where V is the transfer matrix with unique maximum
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eigenvector | o) and eigenvalue Ag. The lattice geom-
etry implies [V,71=0, where T is the unit translation in
the (0,1) direction. Thus ¥ and T have common eigen-
vectors |¢;> with eigenvalues Agexpl—y(j)] and
explio(j)]1, respectively. Equation (1) can then be writ-
ten as

pGe,y) =2 1490 6@ |9 I?
J

xexpl— | x | y() +iyo (j)1. @)

The problem of obtaining correlation functions via V' is
to get the matrix elements, only accomplished so far for
the planar Ising model.® We now show one situation
where a reasonable hypothesis allows us to give a general
method which we then apply to the Baxter model.

Suppose the sum over the Iq)j) can be resolved into a
sum over n-particle bands. This means the |¢j) can be
labeled by |¢(w),), where

V|g(w),) =exp —ZT:y(w,-)} | () 3)

and

-

T| 6(w)n) =exp iZ::wj] l6(@)n) @

Such a grouping is known to be possible for the nor-
mal 2D Ising model—there, the problem is establishing
(4)—and it certainly holds for the first few bands at
least of the Baxter model, as shown by JKM. In this
case, (4) is obtained by varying a parameter, which does
not occur in |¢j) since it labels a commuting family of
V, to a special value for which V is itself a translation.
In general, (4) arises from an underlying plane-wave
structure exp(iX{y;w;), where y; are particle positions;
Bethe’s insight’ was that the w; do not have to satisfy
exp(iNw;) =1, so long as their sum does. Furthermore,
they do not have to be real provided they occur in
complex-conjugate pairs which produce bound states out
of the plane waves. Neither do the scattering phase
shifts between such plane waves have to be * 1 in value.

Let us group the terms in the sum (2) by particle
number n (sometimes called a dispersion series) and
denote the nth term by p,(x,y). Then the n=0 term
gives the contribution (long-range order).? If the lattice
is symmetric under rotation by /2 about the perpendic-
ular axis, then p(x,0) =p(0,x) (the thermodynamic lim-
it having been taken). Since T#T,., minRey(w) > 0;
thus the least n value dominates the spatial decay of
p(x,0). We assume the same to be true for p(0,x) and
moreover that py(x,0) =p,(0,x) for all x. In support of
this, for the usunal planar Ising ferromagnet, it is known
that p,(x,0) =p,(0,x) for all x and for all n.® Let us
define

K(0) =lmN |{go| 0€0) | p() |.
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Then our assumption with (2) gives
2r
J; do K (0)exp(ixw)

=j;2]rdwK(w)exp[— [x|7(0)1. ()

Regarding this as the formula for the xth Fourier
coefficient of K(w), we invert, interchange order of in-
tegration and summation (easily justified), and sum a
geometric series obtaining the homogeneous Fredholm
equation

sinhy(w,)
coshy(w,) —cosw; ’

(6)

27
K(CO[) =ij; d(ozK(wz)

which of course may only have a trivial solution.

We now bring in some results of JKM: There is an
n=1 band below T, given, for an isotropic system, in
terms of an elliptic variable u by

n [ u—ib ] @)

u-+tib
2

expl—yw)l=ksn 5

and

explio(w)] =ksn [ U +il72+iK ]sn [ “ —zb2—1K ] , (8)
where [0,27] for w goes to [0,4K1 for u modulo periodi-
cities. A new parameter { and elliptic modulus / are use-
ful to define the modulus k of the elliptic functions in (7)
and (8) in terms of the Ising interactions J and J;. We

have
/= 1 —exp(—4J4)/sinh2(2J)
1 —exp(—4J4)/cosh2(2J)

and cn(b,!) =exp(—2J4)/cosh(2J). (The critical curve
is given by /=0.) Finally, b =3K()[2K({)/3¢—1] and
the new modulus k is defined by

K'DK'(k)=2¢K (k) . (10)

C))

It is natural to change variables in (6) to the elliptic
ones, getting
sinhy(us)
coshy(u,) —cosw (i)

an

with J(u) =K(0(u))dw/du. Certain structural analo-
gies between (7) and (8) and Onsager’s uniformization’
can be exploited to solve (11). The solution, unique up
to a multiplicative factor, is J(u) =const. Since

4K
==, dur§Ziy)

p7(x,0) =AL4Kduexp[—x7(u)] , (12)
the Ornstein-Zernike (0Z) form'%!!

pT(x,0) ~exp(—xx)/x 2
follows with k= —Inlk/dn?(b/2,k')]; x was originally
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determined by JKM. Such a result would follow just
from J(u) > 0 at the saddle point and sufficient analyti-
city for the contour deformation, if necessary, to the
steepest-descent one. Our result J(z) =const is much
stronger and of such striking simplicity as to encourage
further work. Equation (12) is still valid for the aniso-
tropic system with suitable generalization of (7), as fol-
lows from the existence of commuting families of
transfer matrices.

When there is no one-particle state, a two-particle
band dominates (1) and (2), but our integral-equation
technique does not suffice to extract the matrix element
needed to derive prefactors in the asymptotic expansion.
The correlation length is continuous across the boundary
between these regimes, as shown by JKM, but has a
jump in its first derivative. ,

The rest of this Letter is phenomenological in charac-
ter. It is known that the bubble picture of excitations>'?

L ‘ L
Pr(c) =exp [2L7(0)+ X 2Ky —y;Z1) 2+ (< =y, 21021+ 2hm(h,0) _Zo(}’j> =y,
J=1 j=

where 7(0) is the angle-dependent surface tension and
K=I[7(0)+7®(0)1/2, a term the importance of which
was stressed by Fisher, Fisher, and Weeks.!? At the
bulk critical point both 7 and K vanish. The final term
gives the effect of a magnetic field, proportional overall
to the area of the bubble. The correlation function is

pTL,0)=mh,)2 X P (c). (14)
(4
Such a model is also expected to be valid for the Ising

model equivalent to the eight-vertex model since it is
essentially a uniaxial magnet. The effect of J4 is to in-
troduce a contact interaction between the upper and
lower perimeters of the bubble; this interaction is attrac-
tive for J4> 0. An extra factor

L—1

[Tl —as(y” —y;°)1

1

must be introduced on the right-hand side of (13). The
sum over c¢ in (14) is carried out using a transfer-integral
technique (the y; are taken continuous with yg~ =p¢°
=y,< =y =0 for simplicity). The transformation of
coordinates y;~ =(y;> £ y;<)/2 separates the kernel in
the transfer integral into center-of-mass and relative
parts. The second is handled approximately by replacing
;" —y/=1)? by ly;7 —y;j=1| which gives an exactly di-
agonalizable kernel, described in detail elsewhere.!* The
salient features are that the center-of-mass kernel has a
continuous spectrum on (0,1). The relative motion spec-
trum is more interesting.

(1) For h=0, there exists a critical value of a,
a.=1/2K. This in turn implies (for fixed energetic pa-
rameters) a pinning temperature T, such that a <a, im-
plies T, < T < T.. In this case there is again a continu-
ous spectrum on (0,1) which gives the Kadanoff-Wu

provides a powerful rationalization of the asymptotic be-
havior of T < T, correlation functions for the planar Is-
ing model, including the case with nonzero magnetic
field H.> In this picture, a spin-pair-correlation function
differs from its limiting value of infinite separation be-
cause both spins lie inside a single closed contour, which
delineates a bubble, and which separates the pair of
points from the boundary. Since we are examining the
system on a scale of the correlation length, small closed
loops vanish but the average magnetization outside [in-
side] the bubble is m(h,t) [—m(h,t)], where m(h,t) is
the bulk value. The free energy of the matter inside and
outside the bubble is given by Baxter’s value when H=0.
The statistics of the bubble are controlled by the surface
tension. The bubble is restricted to have only solid-on-
solid (SOS) configurations with top and bottom given by
y;~ and y;<, respectively, for j=0,...,L. The proba-
bility of a configuration is

(13)

(KW) anomalous form'® x “2exp(—«x) when the

center-of-mass contribution is multiplied in. As T de-
creases through T, a bound state comes out of the rela-
tive motion continuous spectrum. This is associated with
the binding together of opposite sides of the bubble. To-
gether with the center-of-mass term, this produces a
one-particle band and OZ behavior (see Fig. 1).

(2) For h> 0, the behavior depends strongly on the
sgn(a—a.): Fora<a,, as h— 0,

pT(x,0)~x ~2p ;exp[—Zxr(l-l-a_myj)] , (15)

where @=[7(0)+7z?(0)1/h and 23AI'QY7y,)=a
xAi(2'y;) with scaled interaction 4 =(a—a.)a"?/a,
and Ai(-) is the Airy function. This type of series was
extracted by McCoy and Wu'® from their series expan-
sion (a somewhat dangerous procedure) of p7(x,0) in
powers of & for the planar Ising model below criticality.
The behavior of the large-j terms, necessary for the in-
tegrability of p7(x,0) in x, is discussed elsewhere.>!2

As g— —oo, y;>0 for all j=1 in (15) but as
a— oo there is a single negative y; denoted yo~ —a 2

7"cm A’xel
0 1 0
IR I T > Tp
0 1
- T < Tp

FIG. 1. Spectrum of kernel for center of mass (Acm.) and
relative motion (A1) showing bound state (cross) for T < T).
The continuum (heavy line) breaks up in A, for 2 > 0.
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(Ref. 14) which gives the dominant contribution to (15)
of the OZ form x ~“exp(—2tx{l —[(a—a.)/a.1%)
for aZa.. The subdominant term is then the KW
anomalous one x ~2exp(—27x). For a>a., there is
thus a mass gap which does not collapse as A— 0. This
is reminiscent of the correlation function of a uniaxial
ferromagnet on going around the critical point in the
(h,T) plane. Such a phenomenon might also supply a
diagnostic test for this behavior experimentally.
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